百家汽车网
您的当前位置:首页五年级数学试题∶解决问题培优解答应用题训练综合练习带答案解析

五年级数学试题∶解决问题培优解答应用题训练综合练习带答案解析

来源:百家汽车网
五年级数学试题∶解决问题培优解答应用题训练综合练习带答案解析

一、人教五年级下册数学应用题

1.一间长方体库房,长5m、宽4m、高3m,在房顶和四面刷油漆(门窗忽略不计),刷油漆的面积是多少平方米?

2.在一个长60cm,宽40cm的玻璃缸中放入一块石块,石块浸没于水中,这时水深20cm,取出石块后水深17cm,石块的体积是多少? 3.修一条长5km的路,第一天修了全程的 分之几没有修?

4.有一堆苹果,如果按每6个一份或每8个一份进行分,结果都多1个,这堆苹果最少有多少个?

,第二天修了全程的

,还剩下全程的几

5.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。拼成的正方形的边长最小是多少厘米?需要几个长方形?

6.一种盒装纸巾长20cm,宽10cm,高12cm。想要把2盒纸巾包装在一起,最少需要多少平方厘米包装纸?

7.一块长方形铁皮,长50cm,宽35cm。像下图那样从四个角分别切掉一个边长为6cm的正方形,然后做成一个水槽。这个水槽最多能装多少升水?

8.把一张长15厘米,宽9厘米的长方形纸裁成同样大的正方形,如果要求纸没有剩余,裁出的正方形边长最大是多少厘米?一共可以裁出多少个这样的正方形?(在图中画一画,再解答)

9.蓬溪县某小学校五(2)班组织植树活动,在活动中发现,小宇和小斌同时栽第一棵树苗,小宇在每隔6分钟栽一棵树苗,小斌在每隔8分钟栽一棵树苗,至少多少分钟后两人再次同时栽树苗?此时,小宇和小斌各栽了多少棵树苗?

10.五(1)班有男生28人,是女生人数2倍少6人,女生人数占全班人数的几分之几? 11.一个长10cm,宽10cm的长方体容器中有一些水,水深8.5cm。小明将一块石头放入这个容器中,并完全浸没在水中,这时量得水深10cm。这块石头的体积是多少立方厘米? 12.汽车总站是3路汽车和5路汽车的起点站,3路汽车每5分钟发车一次,5路汽车每8分钟发车一次。两路汽车第一次同时发车的时间是6:00,最后一次同时发车的时间是22:00。一天内一共同时发车多少次?

13.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。拼成的正方形的边长最小是多少厘米?需要几个这样的长方形?

14.一个长方体水缸,长10分米,宽8分米,水深4.5分米,放入一块石头,这时水面上升到6分米,这块石头的体积是多少?

15.乐乐家新买了一个长方体的鱼缸,鱼缸长8分米,宽4分米,高6分米,注入4分米深的水,然后放入一个假山,假山完全浸没在水中,这时水面距缸口1.4分米。这个假山的体积是多少立方分米?

16.有两根木棒,一根长36dm,另一根长42dm,要把他们截成同样长的小段,而不能有剩余,每根小棒最长有多少dm?一共可以截成多少段?

17.甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果4月25日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日? 18.

(1)求出下图长方体的体积。

(2)下图是由棱长1cm的小正方体摆成的,请计算这个图形的表面积。

19.东风湖湿地公园绿化栽树,每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余。这些树不到50棵,这些树一共有多少棵?

20.五(2)班的同学们分学习小组。如果按3人一组分,多1人;如果按5人一组分也多1人。已知五(2)班的人数在40-50人之间,五(2)班有多少人? 21.看图计算下图的表面积和体积。(单位:cm)

表面积: 体积:

22.南湖小区准备修建一个长4m,宽2.5m,高3.6m的长方体小型蓄水池。

(1)给这个蓄水池的地面铺正方形地砖,要使铺的地砖都是整块,地砖的边长最长是多少?一共需要这样的地砖多少块?

(2)在蓄水池的四壁上贴2.4米高的瓷砖,需要多少平方米的瓷砖?

23.学校要粉刷新教室的四周和屋顶,已知教室的长是8m,宽是6m,高是3m,门窗的面积是11.4平方米。如果每平方米需要花6元涂料费,粉刷这个教室需要花费多少元? 24.车站的4路电车每隔8分钟发一趟车,5路电车每隔12分钟发一趟车。上午8时整4路电车和5路电车同时出发,再过多长时间两车又同时从车站出发?是几时几分? 25.希望小学有一间长10米、宽6米、高3.5米的长方体教室。 (1)这间教室的空间有多大?

(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?

26.有两根钢丝,长度分别是12cm、18cm。现在要把他们截成长度相同的小段,但每一根都不能剩余,每小段最长多少米?一共可以截成多少段?

27.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米?

28.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。

(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)

(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)

29.李叔叔想要制作一个长20cm、宽15cm、高30cm的无盖长方体鱼缸。

(1)李叔叔至少需要买多少cm2的玻璃?

(2)为了提高观赏性,李叔叔在鱼缸里放了一块假山石,水面高度由原来的10cm上升到13cm。这块假山石头的体积是多少cm3?

30.有47块水果糖和38颗奶糖平均分给一个小组的同学,结果水果糖剩2块,奶糖剩3块,这个小组最多有几位同学?

【参】***试卷处理标记,请不要删除

一、人教五年级下册数学应用题

1. 解:房顶:5×4=20(平方米) 前后:5×3×2=30(平方米) 左右::4×3×2=24(平方米) 总面积:20+30+24=74(平方米) 答:刷油漆的面积是74平方米。

【解析】【分析】刷油漆的面积一共是5个面的面积,长方体上面的面积+前后左右的面积=刷油漆的面积;

长×宽=上面的面积,长×高×2=前后面的面积;宽×高×2=左右面的面积。 2. 解:石块的体积=60×40×(20-17) =2400×3

=7200(立方厘米)

答:石块的体积是7200立方厘米。

【解析】【分析】长方体的体积=长×宽×高,本题中石块的体积=玻璃缸的长×玻璃缸的宽×(放入石块时的水深-取出石块时的水深),代入数值计算即可。 3. 解:1-- =1--

=

答:还剩下全程的。

【解析】【分析】还剩下全程的几分之几=1-第一天修了全程的几分之几-第二天修了全程的几分之几,代入数值计算即可。 4. 解:6和8的最小公倍数是24, 24+1=25(个)

答:这堆苹果最少有25个。

【解析】【分析】分析题中的信息“ 按每6个一份或每8个一份进行分,结果都多1个, ”,所以这堆苹果最少的个数为6和8的最小公倍数+1,所以求出6和8的最小公倍数是解题的关键。

5. 解:4×5=20,即拼成的正方形的边长最小是20厘米; 20÷4×(20÷5) =5×4 =20(个)

答:拼成的正方形的边长最小是20厘米,需要20个长方形。

【解析】【分析】此题主要考查了最小公倍数的应用,根据题意可知,拼成的正方形的边长最小是小长方形长与宽的最小公倍数,据此计算;

要求需要几个长方形,分别用除法求出长、宽部分需要的长方形个数,然后相乘即可,据此列式解答。

6. 包装后的高:10+10=20(厘米)

包装后的表面积:(20×20+20×12+20×12)×2=880×2=1760(平方厘米) 答: 最少需要1760平方厘米包装纸 .

【解析】【分析】把最大的面叠放在一起,表面积最小,用的包装纸最少;(长×宽+长×高+宽×高)×2=长方体表面积,据此解答。 7. (50-6×2)×(35-6×2)×6 =38×23×6 =5244(立方厘米) =5.244(升)

答: 这个水槽最多能装5.244升水 。

【解析】【分析】水槽的长=铁皮的长-2个6厘米;水槽的宽=铁皮的宽-2个6厘米;水槽的高是6厘米;水槽的体积=底面积×高,计算时注意单位统一。 8. 如图:

15和9的最大公因数是3,所以裁出的正方形边长最大是3厘米; 15÷3=5(块) 9÷3=3(块) 5×3=15(块)

答:裁出的正方形边长最大是3厘米,一共可以裁出15个这样的正方形.

【解析】【分析】15和9的最大公因数就是裁出的正方形最大的边长;计算出长和宽分别可以裁几块,它们的积就是可以裁出的最多数。 9. 解:6=2×3,8=2×2×2,

6和8的最小公倍数=2×2×2×3=24,所以至少24分钟后两人再次同时栽树苗。 小宇:(24÷6)+1 =4+1 =5(棵), 小斌:(24÷8)+1 =3+1 =4(棵)。

答: 至少24分钟后两人再次同时栽树;小宇栽了5棵,小斌栽了4棵。

【解析】【分析】分析题意可知要求至少多少分钟后两人再次同时栽树苗即是求6和8的最小公倍数,将6和8分别写成质数连乘的形式,再找出最小的公倍数即可。

小宇(小斌)栽树苗的棵数=(6和8的最小公倍数÷小宇(小斌)栽两棵树之间的分钟数)+1,代入数值计算即可。 10. 解:28+6=34(人) 34÷2=17(人) 28+17=45(人) 17÷45=

答:女生人数占全班人数的 。

【解析】【分析】先计算出女生人数的2倍有多少人,用男生的人数加上男生比女生2倍少的人数;进行可求出女生的人数;再用男生的人数+女生的人数计算出总人数,最后用女生的人数除以总人数即可得出女生人数占全班人数的几分之几。

11. 10×10×(10-8.5) =10×10×1.5 =100×1.5 =150(立方厘米)

答: 这块石头的体积是150立方厘米。

【解析】【分析】此题主要考查了不规则物体的体积计算,长方体容器的长×宽×上升的水面高度=这块石头的体积,据此列式解答。 12. 解:5×8=40(分), 22时-6时=16(时)=960(分), 960÷40=24(次) 24+1=25(次)

答:一天内一共同时发车25次。

【解析】【分析】此题主要考查了最小公倍数的应用,先求出两车每两次同时发车的间隔时间,也就是它们发车时间的最小公倍数,然后计算出从第一次同时发车到最后一次同时发车间隔的时间,最后用间隔的时间÷每两次同时发车的间隔时间+1=同时发车的总次数,据此列式解答。 13. 解:5×4=20(厘米) (20÷5)×(20÷4)=4×5=20(个)

答:拼成的正方形的边长最小是20厘米,需要20个这样的长方形。

【解析】【分析】正方形的最小边长就是5和4的最小公倍数;5和4的最小公倍数除以5就是正方形的长处需要的长方形个数,5和4的最小公倍数除以4就是正方形的宽处需要的长方形个数,两个个数的积,就是需要的长方形个数。 14. 解:10×8×(6-4.5) =80×1.5

=120(立方分米)

答:这块石头的体积是120立方分米。

【解析】【分析】水面上升部分水的体积就是这块石头的体积,由此用水缸的底面积乘水面上升的高度即可求出石块的体积。 15. 解:8×4×(6-1.4-4) =8×4×0.6 =32×0.6

=19.2(立方分米)

答:这个假山的体积是19.2立方分米。

【解析】【分析】此题主要考查了不规则物体的体积,先求出放入假山后,水面上升的高度,然后用水面上升的高度×鱼缸的长×宽=上升部分的水的体积,也就是假山的体积,据此列式解答。 16. 解:36=2×2×3×3 42=2×3×7

36和42的最大公因数是2×3=6 一共可以截成:36÷6+42÷6=13(段)

答:每根小棒最长有6dm,一共可以截成13段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也就是每根小棒最长的长度; 要求一共可以截成几段,分别用除法求出两根木棒截的段数,然后相加即可。 17. 解:6、8、9的最小公倍数是72 4月25日+72天=7月6日

答:下一次都到图书馆是7月6日。

【解析】【分析】先求出6、8、9的最小公倍数,这就是再次相遇经过的天数,然后在4月25日的时间上加上这些天数即可。 18. (1)解:体积=7×3×2 =21×2

=42(立方厘米)

(2)解:图形的表面积=(5+3+5)×2×(1×1) =13×2×1

=26(平方厘米)

【解析】【分析】(1)长方体的体积=长×宽×高,代入数值计算即可;

(2)图形的表面积=(从前面看到的正方形的个数+从左面看到的正方形的个数+从上面看到的正方形的个数)×2×1个小正方形的面积,计算即可。 19. 解:12的倍数有:12、24、36、48、60…… 16的倍数有:16、32、48、……

既是12的倍数,又是16的倍数,且在50以内的数是48, 所以这些树一共有48棵。 答:这些树一共有48棵。

【解析】【分析】 每12棵栽一行,或者每16棵栽一行,都正好栽完而没有剩余 ,说明这些树的棵树是12和16的倍数,再分别列出12和16的倍数,然后找到既是12的倍数,又是16的倍数,并且比50小的数就是答案了。 20. 解:3和5的公倍数是15; 在40-50人之间,15的倍数有45; 45+1=46(人)

答:五(2)班有46人。

【解析】【分析】五(2)班的人数=3和5的公倍数+1人,五(2)班的人数在40-50人之间,据此解答。 21. 解:表面积: (12×6+12×4+6×4)×2+3×3×4 =(72+48+24)×2+36 =144×2+36 =288+36 =324(cm2)

体积:12×6×4+3×3×3 =288+27 =315(cm3)

【解析】【分析】图形的表面积是下面长方体的表面积加上上面正方体4个面的面积即可;体积是下面长方体体积加上上面正方体体积。 22. (1)解:4m=40dm;2.5m=25dm,

因为40和25的最大公因数是5,所以地砖的边长最长是5dm, 所以一共需要这样的地砖的块数=(40÷5)×(25÷5) =8×5 =40(块)

答:地砖的边长最长是0.5米;一共需要这样的地砖40块。 (2)解:需要瓷砖的面积=(4×2.4+2.5×2.4)×2 =(9.6+6)×2 =15.6×2 =31.2(平方米)

答:需要31.2平方米的瓷砖。

【解析】【分析】(1)将4m和2.5m转化成dm,即4m=40dm;2.5m=25dm,地砖的边长最长是40和25的最大公因数,40和25的最大公因数是5dm,所以一共需要地砖的块数=(蓄水池的长÷最大公因数)×(蓄水池的宽÷最大公因数),代入数值计算即可; (2)需要瓷砖的面积=(蓄水池的长×四壁贴瓷砖的高度+蓄水池的宽×四壁贴瓷砖的高度)×2,代入数值计算即可。 23. 解:(8×6+8×3×2+6×3×2-11.4)×6 =(48+48+36-11.4)×6 =120.6×6 =723.6(元)

答:粉刷这个教室需要花费723.6元。

【解析】【分析】要粉刷的面积=教室5个面的面积-门窗的面积,要粉刷的面积×6=粉刷这个教室需要花费的钱数。 24. 解:8=2×2×2,12=2×2×3,

所以8和12的最小公倍数是:2×2×2×3=24,8时+24分=8时24分。 答:再过24分钟两车又同时从车站出发,是8时24分。

【解析】【分析】求两辆电车同时发车的两次之间的间隔时间就是两辆电车分别发车的间隔时间的最小公倍数;

第二次同时发车的时间=第一次同时发车的时间+两辆电车同时发车的两次之间的间隔时间,据此代入数值解答即可。 25. (1)解:10 ×6×3.5 =60×3.5 =210(立方米)

答:这间教室的空间有210立方米。

(2)解:10×6+(10×3.5+3.5×6)×2-6 =60+(35+21)×2-6 =60+56×2-6 =60+112-6 =166(平方米)

答:这间教室要刷166平方米。

【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间; (2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。 26. 解:12=3×2×2, 18=2×3×3,

12和18的最大公因数是3×2=6,所以每小段最长是6米; 12÷6+18÷6 =2+3 =5(段)

答:每小段最长是6米,一共可以截成5段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数;

然后用长÷每段的长度+宽÷每段的长度=一共可以截的段数,据此列式解答。 27. 解:120÷4×24 =30×24

=720(立方厘米)

答:原来长方体的体积是720立方厘米。

【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。 28. (1)(12×10+10×8)×2 =(120+80)×2 =200×2

=400(平方厘米)

答:这张纸的面积至少是400平方厘米。 (2)12×8×(10-2) =96×8

=768(立方厘米)

答:小明吃了768立方厘米的罐头。

【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;

(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。

29. (1)解:20×15+(20×30+15×30)×2 =20×15+(600+450)×2 =20×15+1050×2 =300+2100 =2400(cm2)

答: 李叔叔至少需要买2400cm2的玻璃。 (2)解:20×15×(13-10) =20×15×3 =300×3 =900(cm3)

答: 这块假山石头的体积是900cm3。

【解析】【分析】(1)此题主要考查了长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;

(2)观察图可知,假山石头的体积=长方体的底面积×上升的水位高度,据此列式解答。 30. 解:水果糖、奶糖分别分出:47-2=45(块),38-3=35(块) 把45、35分解质因数:45=3×3×5,35=5×7 45、35的最大公因数:5。 答: 这个小组最多有5位同学。

【解析】【分析】用“分出块数=原有块数-剩余块数”,分别求出水果糖、奶糖分出块数;再求出二者的最大公因数,此题得解。

因篇幅问题不能全部显示,请点此查看更多更全内容